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ABSTRACT
In our previous paper, using graph theory and combinatorics, a study on a special type of tetrahedron called Coxeter
Andreev’s Tetrahedron (CAT) had been facilitated, and it was found that there are exactly 1, 4 and 30 CATs having
respectively two edges of order n > 6, one edge of order n> 6 and no edge of order n>6, ne  upto symmetry.
In the present paper, we have studied about the shapes or existence of these 1+4+30=35 CATs in the spaces:
Euclidean, Spherical and Hyperbolic.
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I. INTRODUCTION

A simplex (in plural, simplexes or simplices) is a generalization [1] of the notion of a triangle or tetrahedron to
arbitrary dimensions. A n-dimensional polytope P in X = E"/S" /H" , with n>0 , is a n-simplex [9] if and
only if P has exactly n+1 sides. Specifically, a n-simplex is a n-dimensional polytope which is the convex hull of

its 7+1 vertices. In particular, a tetrahedron is a 3-dimensional simplex. Tetrahedron is the only 3-simplex convex
polyhedron having four faces. The tetrahedron shape has a wide application [2] in engineering and computer science.
Tetrahedral mess generation is one of such application. In chemistry, the tetrahedron shape is seen in nature in

covalent bonds of molecules. For example, in a methane molecule (CH 4) or an ammonium ion (NH 4+ ) , four

hydrogen atoms surround a central carbon or nitrogen atom with tetrahedral symmetry.

Previously, Roland K. W. Roeder’s Theorem [25] provides the classification of compact hyperbolic tetrahedron by
restricting to non-obtuse dihedral angles. Vinberg proved in [27] that there are no compact hyperbolic coxeter

polytopes in H" when 7> 30 . Tumarkin classified the hyperbolic coxeter pyramids in terms of coxeter diagram
and John Mcleod generalized it in his article [10]. D. A. Derevnin, at el [26] found the volume of symmetric
tetrahedron. Again, in our article [28], using graph theory and combinatorics, a study on a special type of
tetrahedron called coxeter Andreev’s tetrahedron has been facilitated and it has been found that there are exactly one,

four and thirty coxeter Andreev’s tetrahedrons having respectively two edges of order 7> 6 , one edge of order
n>6 and no edge of order 7>6, n€  upto symmetry. Now, in the present paper, we have studied about the
shapes or existence of these 1+ 4+ 30 =35 CATs in the spaces: Euclidean, Spherical and Hyperbolic.

II. COXETER ANDREEV’S TETRAHEDRONS (CATs)
The following definitions are taken from our previous article [28]

Definition 2.1: The angle between two faces of a polytope, measured from perpendiculars to the edge created by the
intersection of the planes is called a dihedral angle.
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VA
Definition 2.2: A coxeter dihedral angle is a dihedral angle of the form — where, # is a positive integer > 2 . A
n

polytope with coxeter dihedral angles is called a coxeter polytope.

T
Definition 2.3: If the dihedral angle of an edge of a polytope is —, 7 is a positive number, then 7 is said to be the
n

order of the edge. We define a trivalent vertex to be of order (l ,m, n) if the three edges at that vertex are of orders
l,m,n.
Definition 2.4: An Andreev’s polytope is an abstract polytope which satisfies the following Andreev’s conditions
[16].
. . T
(1) Each dihedral angle ¢, is non-obtuse (0 <a; < Ej .

(2) Whenever three distinct edges ¢;,e;,e, meet ata vertex, then a, +a,;, +a, > 7.

(3) Whenever Fp (3) intersecting edges e.e;,e., then &, + o, +o, <7.

(4) Whenever Fp (4) intersecting edges ¢,,€;,¢,,€ ,then &, +a, +a, +a, <27

(5) Whenever there is a four sided face bounded by edges ¢,,e,,e;,¢e,, enumerated successively, with edges
€15,€,3,€54,€,, entering the four vertices (edge €; connects to the ends of e, and e;), then

o, o, ta, +o,, oy, oy, <37 ,and o, +o, o, ta, o, ta, <3m .

An Andreev’s polytope with coxeter dihedral angles is called a coxeter Andreev’s polytope.

III. GRAM SPECTRUMS OF COXETER ANDREEV’S TETRAHEDRONS AND THEIR
EXISTENCE IN SPACES: EUCLIDEAN, SPHERICAL AND HYPERBOLIC

The gram matrix is the most essential and natural tool associated to a simplex. It takes an important role in scientific
computing, statistical mechanics and random matrix theory [20]. The geometric properties of a simplex are enclosed
in the eigenvalues of a gram matrix. The shape of a simplex is determined by the determinant of its gram matrix.

The gram matrix G of a k -simplex in X whose sides are 81585, 58, 1is the (k +1)><(k+1) matrix with

ijth entry is —cos 917 , 0ij is the angle between the sides s, and § ;- The gram matrix G is symmetric (real), the

eigenvalues of G are real and hence can be ordered, say 2’1 > ﬂ’z > /’?3 =z 2 ﬂn . The spectrum of a gram matrix
is said to be gram spectrum. Let G be a gram matrix with eigenvalues /L,ﬂ.z,ﬂ,}, ,ﬂr having respective

multiplicities m,,m,,m;, ,m, . Then the gram spectrum of G is written as

A A,
o(G)= % oo (G)=(A", A= A A,
m,m,  ny m,
For a gram matrix G with eigen values ﬂ1 , ﬂz R 2,3 s /1,, , the Gram Energy is defined as GE (G) = Z |/1i| .

i=1
Definition 3.1: A simplex lies in Euclidean, Spherical or Hyperbolic space if the determinant of the gram matrix is
0, positive or negative respectively.
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Definition 3.2: Consider a compact tetrahedron (Euclidean/Spherical/Hyperbolic) T with dihedral angles A, B,C

at the edges adjacent to one vertex, and D, E, I are the dihedral angles opposite to A, B, C respectively. Then

the gram matrix of the tetrahedron 7' (A, B,C,D,E,F ) is defined as

1 —cosA —cosB —cosF

—cos 4 1 —cosC —cosE

- —cosB —cosC 1 —cosD
—cosF —cosE —cosD 1

Theorem 3.3: [28] In a CAT T, if exactly two edges are of order 7 > 6 , then there exists exactly 1 such 7 upto

symmetry. Refer figure 1.

T,-1=[m>6,2,2,n>6,2,2]
Figure 1

Result 3.4: Determinant and spectrum of the gram matrix of the CAT T2n -1= [m >6,2,2,n>6,2, 2] obtained

in theorem 3.3 is calculated and listed in table 1. This table also shows the space in which this CAT exists.

Table 1
CAT Determinant Spectrum Space
(Ref. Def. 3.1)
T2n-1=[m26,2,2,n26,2,2] 1—cos? [ Z - cos? [ 2 1 —cos ™ 1+ cos Spherical
n m m’ m’ (Ref. Theorem 3.5)
+cos? (ljcosz (fj 1—cos£,1+cos£,
m n n n

Theorem 3.5: The CAT T, -1= [m >6,2,2,n>6,2, 2] exists in spherical space.

Proof: The determinant of the gram matrix for T, -1= [m >6,2,2,n2>6,2, 2] is
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1 —cosz —cos z —cos z 1 —cos z 0 0
m 2 2 m
—cosl 1 —cos z —Cos i —CcoS z 1 0 0
m 2 2 _ m
—cos£ —cosZ 1 —cos z 0 0 1 —cos i
2 2 n n
—cosz —cosZ —cosZ 1 0 0 —cos i 1
2 2 n n

=1-cos? [Zj— cos’ (lj+ cos’ [1}052 (Zj
n m m n

Let f (m,n)=1-cos’ (Zj— cos’ (zj +cos’ (ﬁj cos? (Ej .Then f(m,n)>0,Ym=>6,Yn>6 as shown in figure 2.
n m m n

The figure 2 is obtained by keeping m as constant, m>6 and n>6 . By definition 3.1, the CAT
T, -1= [m >6,2,2,n2>6,2, 2] exists in spherical space.

3_

24

14
f[m,”_:' 0+ T T T 1
7 3 9 1a

-14

-3

s

Figure 2

Theorem 3.6: [28] In a CAT T , if exactly one edge is of order 7> 6 , then there exists exactly 4 such 7' upto
symmetry. Refer figure 3.

T,2=[n>6,2,2,3,2,2]
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T,-3=[126,2,2,4,2,2] T,-4=[n>6,2,2,52,2]
Figure 3

Result 3.7: Determinants and spectrums of the gram matrices of the 4 CATs obtained in theorem 3.6 are calculated
and listed in table 2. This table also shows the spaces in which these 4 CATs tetrahedrons exist.

Table 2

CATs Determinant Spectrum Space (Ref. Def. 3.1)
T -1=(n>6,2,2,2,2,2 T o Spherical
In [ ] 1—cos? - 1+,/1—sin — (Ref. Theorem 3.8)
1-, /l—sin2 z
n
1,
1
T -2=(n>6,2,2,3,2,2 3 3 o7 1 Spherical
In [ T ] Z_ZCOS " P (Ref. Theorem 3.9)
3
2 b
1- cosz,
n
1+ cosZ
n
T -3=|n>6,2,2,4,2,2 1 1 T 1 Spherical
In [ ] E_ECOSZ o 1+E\/§a (Ref. Theorem 3.10)
1-142,
2
1- cosz,
n
1+ cosZ
n
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T -4=|n>6,2,2,5,2,2 4 Vs pis Spherical
In [ 5 Luy iy Dy Loy ] 1—-cos’ (gj—cosz (;j l—COS;, (Ref. Theorem 3.11)
+cos’ [zjcos2 [ZJ 1+cos =,
n 5 n
1+cos£,
5
l—cosz
5

Theorem 3.8: The CAT Tln -1= [n >6,2,2,2,2, 2] exists in spherical space.

Proof: The determinant of the gram matrix for Tln -1= [n >6,2,2,2,2, 2] is

T V4 V4
1 —COS— —COS— —COS — x
n 2 2 1 —cos— 0 0
V4 V4 V4 n
—Ccos— 1 —COS— —COS —
n 2 2| _|-cosZ 1 0 0
CeosE —eos® 1 —eosE n
cos2 cos2 cos2 0 0 1 0
V4 s s 0
—COS— —COS— —COS— 1
2 2 2

=1-cos? (zj
n

Let f(n):l—cosz(zj . Then f(n)>0,Vn26 as shown in figure 4. By definition 3.1, the CAT
n

T, -1= [n >6,2,2,2,2, 2] exists in spherical space.

Figure 4

Theorem 3.9: The CAT Tln 2= [n >6,2,2,3,2, 2] exists in spherical space.

Proof: The determinant of the gram matrix for T, -2 = [n >6,2,2,3,2, 2] is
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1 —cosZ —cosZ —cos z 1 —cos£ 0 0
n 2 2 n
—cosE 1 —cosz —cos i —cosZ 1 0 0
n 2 2 _ n
—cos£ —cosZ 1 —cos z 0 0 1 —l
2 2 3 2
—cosE —cosZ —cosz 1 0 0 —l 1
2 2 3 2

Let f(n):%—%cos2 (%j . Then f(n)>0,Vn26 as shown in figure 5. By definition 3.1, the CAT

T, 2= [n >6,2,2,3,2, 2] exists in spherical space.

Figure 5
Theorem 3.10: The CAT T, -3= [n > 6,2,2,4,2,2] exists in spherical space.

Proof: The determinant of the gram matrix for Tln 3= [n >6,2,2,4,2, 2] is

1 —cosz —cosZ —cosZ 1 —cos T 0 0
n 2 2 n

—cosz 1 —cosE —cos’i —cos7i 1 0 0

n 2 2 _ n
—cosZ —cosz 1 —cosii 0 0 1 - 1\5

2 2 4 2
—cosZ —cosZ —cosz 1 0 0 - l\/Z_ 1

2 2 4 2

Let f(n) :%—%cos2 (Ej . Then f(n) >0,Yn>6 as shown in figure 6. By definition 3.1, the CAT
n
T,-3= [n >6,2,2,4,2, 2] exists in spherical space.
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Theorem 3.11: The CAT T, -4 = [n >6,2,2,5,2, 2] exists in spherical space.

Proof: The determinant of the gram matrix for Tln 4= [n >6,2,2,5,2, 2] is

n

Let f(n)=1-cos’ [%J—cosz (£j+cosz (”

n

1 —cosz —cos z —Cos z 1 —Ccos — 0 0
n 2 n

—cosZ 1 —cos z —cos z —cos — 1 0 0

n 2 2 _ n
—cosz —cosz 1 —CoSs z 0 0 1 —cos i

2 2 5 5
—cosZ —cosZ —cos z 1 0 0 —Cos z 1

2 2 5 5

=1-cos’ (zj— cos’ (£j+ cos’ (chos2 (71]
5 n n 5

definition 3.1, the CAT T, -4 = [n >6,2,2,5,2, 2] exists in spherical space.

Coesr

3
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|:I T T T T 1
] T 2 a 10
. 1
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-3
Figure 7
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Theorem 3.12: [28] In a CAT T, if T has no edge of order 7> 6 , then there are exactly 10 such 7' upto
symmetry with at least one vertex is of order (2, 2, 2) . Refer figure 8.

T,.-8=[2,2,2,3,3,3] T,.-9=[2,2,2,4,3,3] T, -10=[2,2,2,5,3,3]
Figure 8
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Result 3.13: Determinants and spectrums of Gram matrices of the 10 CATs obtained in theorem 3.12 are calculated
and listed in table 3. This table also shows the spaces in which these 10 CATs tetrahedrons exist.

ISSN 2348 - 8034
Impact Factor- 5.070

Table 3
CATs Determinant Spectrum Space (Ref. Def. 3.1)
T, -1=[2,2,2,2,2,2] 1 (1,1,1,1) Spherical
T,-2= [2, 2,2,3,2, 2] 3 (E 1 ! l] Spherical
4 2 b 2 b
— Spherical
T, -3 —[2,2,2,4,2,2] 1 (l+l\/5,l—l\/2_,l,lj pherica
2 2 2
— Spherical
T, -4=[2,2,2,5,2,2] | cos? (%) L1 F ZCO{E} pherica
2 5
tee(3)
1—— [1+2cos| — |,
2 5
1,
1
T,,-5= [2, 2,2,3,2, 3] 1 (1 N l\/i,l— lﬁ,l,lj Spherical
2 2 2
T, -6 = [2, 2,2,4, 2,3] 1 (1_}_1\/5’1_1\/5’ Llj Spherical
4 2 2
7= 3 T Spherical
T [2’2’2’5’2’3] Z‘COSZ [;) 1+% 2+Zcos(%}
(3]
1-—.24+2cos| — |,
2 5
1,
1
T, -8= [2,2, 2,3,3,3] 1 (1_}_1\/5’1_1\/5’1’1} Spherical
4 2 2
T, -9=[2,2,2,4,3,3] 0 (0,2,1,1) Euclidean
1 e Hyperbolic
TOH-10=[2,2,2,5,3,3] 5 (;j 1+—,[3+2cos| =

1-— [3+2cos| —

N | = N |
R
]i‘
%_—/%/

1,
1

Coesr
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Theorem 3.14: [28] If a CAT T has no edge of order 7 > 6, then there are exactly 8 such T’ upto symmetry with
at least one vertex is of order (2, 2, 3) and no vertex is of order (2, 2, 2) .

T,-16=[2,2,3,2,2,5] T, -17=[2,2,3,3,2,4] T,.-18=[2,2,3,3,2,5]
Figure 9

Result 3.15: Determinants and spectrums of gram matrices of the 8 CATs obtained in theorem 3.14 are calculated
and listed in table 4. This table also shows the spaces in which these 8 CATs tetrahedrons exist.

Table 4
CATs Determinant Spectrum Space(Ref.
Def. 3.1)
T, -11= [2,2,3,2,2,3] 9 é’l’é’l Spherical
16 2222
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T, -12=(2,2,3,3,2,3] 5 3.1 231 Spherical
' 16 4+4\/§’4 4‘/3’
Sl s
4 4 4 4
T,.-13=[2,2,3,4,2,3] % 1__(_ \/—1+1\/—+ Ly Spherical
1—2\/€+—\/§,1+—\/_——\/E
T, -14 = [2,2,3,5,2,3] 2_0082 [gj . 1 cos ,l-i-cosz (”j Hyperbolic
16 5 b 5
1+lcos j 1+ cos’ [ﬂj
2 2\ 5
ol Saesls)
1-—cos 1+cos’
2 5
1——00( j 1-cos ( )
5
T, -15= [2, 2,3,2,2,4] 3 (l 3 14 ) Spherical
8 2°2°
T, -16=[2,2,3,2,2,5] __gcosz[gj (1+cos OS(ZJ,E, lj Spherical
4 4 5 5)2°2
1 Spherical
T,.-17=[2,2,3,3,2,4] 3 1“J2+f1+ J“f
1——\/2—\5,1%\/2_
Spherical

T,.-18=[2,2,3,3,2,5]

alm

6+2\/4cos[ +4cos( +5+4c %,

-bl_
Ln|§)

l 6-2 4cos
4

W Josse
-t oo e 2 e 2
4 s

+4cos( +5+4c

Ln|k1

)
)
)

(
n
(
i J Tl

Theorem 3.16: [28] If a CAT T has no edge of order 7 > 6 , then there are exactly 4 such T upto symmetry with
at least one vertex is of order (2, 2, 4) and no vertex is of order of the forms (2, 2, 2) 5 (2, 2, 3) .

Coesr
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T, 21=[2,2,4,2,2,5] T, -22=[2,2,4,3,2,5]
Figure 10

Result 3.17: Determinants and spectrums of gram matrices of the 4 CATs obtained in theorem 3.16 are calculated
and listed in table 5. This table also shows the spaces in which these 4 CATs tetrahedrons exist.

Table 5
CATs Determinant Spectrum Space
(Ref. Def. 3.1
T,,-19=[2,4,2,2,4,2] 1 Llaillsa Spherical
4 2 2
22, 1-142
2 2
T, -20=[2,2,4,3,2,4] 0 (0 ,13 Euclidean
b b 2 b 2
T,,-21=[2,2,4,2,2,5] | 1_1 o (EJ sl Spherical
2 2 5 2 2 2 b
1+ cos (Ej ,1—cos [Zj
5 5
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T,-22=[2,2,4,3,2,5] | 1_1_of7 A Hyperbolic
0n [ ] Z_ECOS (Ej 1+l\/2+ cos’ [£j+2 +cos[£j,
2 5 5
l—l\/2+ fcosz(£j+2 +cos(£j,
2 5 5

Theorem 3.18: [28] If a CAT T has no edge of order 7 > 6, then there are exactly 2 such T’ upto symmetry with
at least one vertex is of order (2, 2, 5) and no vertex is of order of the forms (2, 2, 2) R (2, 2, 3) , (2, 2, 4) .

T,,-23=[2,2,5,2,2,5] T, -24=[2,2,5,3,2,5]
Figure 11

Result 3.19: Determinants and spectrums of gram matrices of the 2 CATs obtained in theorem 3.18 are calculated
and listed in table 6. This table also shows the spaces in which these 2 CATs tetrahedrons exist.

Table 6
CATs Determinant Spectrum Space

(Ref. Def. 3.1)
Tp,-23= [2, 2,5,2,2, 5] 1-2cos’ (%)+cos4 (%) 1+% 1+ 2005(

Spherical

>

vy
~—

1—=,|1+2cos R

1+—,/1+2cos ,

N | = N | —
7~ N\| ~/
vy | uly
Ne— | N—

1—l 1+2cos(
2

vy
N—
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TOn 24 = [2, 2, 5939235] %—Zcos2 (%)Jrcos4 (%) %Jrl 5 +8005(

Hyperbolic

w3
N

>

4

é—l 5+8cos z R
4 4 5
é+l 5+8cos(£j,
4 4 5

é—l 5+8cos[
4 4

w3
a7

Theorem 3.20: [28] If a CAT T has no edge of order 7 > 6 , then there are exactly 3 such 7 upto symmetry with

at least one vertex is of order (2,3,3) and no vertex is of order of the forms

(2,2,2),(2,2,3),(2,2,4),(2,2,5).

T,.-25=[2,3,3,2,3,3] T,,-26=[2,3,3,2,3,4] T,,-27=[2,3,3,2,3,5]
Figure 12

Result 3.21: Determinants and spectrums of gram matrices of the 3 CATSs obtained in theorem 3.20 are calculated
and listed in table 7. This table also shows the spaces in which these 3 CATs tetrahedrons exist.

Table 7
CAT Determinant Spectrum Space
(Ref. Def. 3.1)
T, -25=[2,3,3,2,3,3] 0 (0,2,1,1) Euclidean
T, -26=[2,3,3,2,3,4] _l(lﬂ/g) 5.0 5. 50 Hyperbolic
812 4 4 4 ’

21 p-Lan,

4 4 4

3—lx/§+l\/7—2\/§,

4 4 4

3 ln-Lhon
4 4
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N7 — 5 1 T Hyperbolic
Ton-27 [2’3’3’2°3’5] ___COS[_j —+lcos(£j+—l 5—4cos £j+4co§ (fj,
16 4 (5 4 2 \5) 4 5 5
3 Lz
3 (_j §+lcos[£j——l 5-4cos i[j+4cosz zj,
4 2 5) 4 5 5
E—lcos(£)+—1 5—4cos i[j+4co§ fj,
4 2 5) 4 5 5
E—1005[5)——1 5—4cos irj+4co§ fj
4 2(5) 4 5 5))

Theorem 3.22: [28] Ifa CAT T has no edge of order 7> 6, then there are exactly 2 such T’ upto symmetry with

at least one wvertex is of order (2,3,4) and no vertex is of order of the forms

(2,2,2),(2,2,3),(2,2,4),(2,2,5).(2,3,3).

T, -28 =[2,3,4,2,3,4] T, -29=[2,3,4,2,3,5]
Figure 13

Result 3.23: Determinants and spectrums of gram matrices of the 2 CATs obtained in theorem 3.22 are calculated
and listed in table 8. This table also shows the spaces in which these 2 CATs tetrahedrons exist.

Table 8
CATs Determinant Spectrum Space
(Ref. Def.
3.1)
_ Hyperboli
TOH-28—[2,3,4,2,3,4] 7 l+l\/§,l_l\/§’ yperbolic
6 2 2 2 2
3. 1p3 1y
2 2 2 2
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T,-29=[2,3,4,2,3,5]

1

16 4

2 cos(
5

T

)

§+%\/§+%\E+é\/30—4x/§+2\/§—4\/§\/§,

Hyperbolic

%%«E%ﬁ—%\/so—mﬁuﬁ—mﬁﬁ,
1—1\5—%£+é\/30—4\5+2£—4«ﬁﬁ,

8 4
%—%ﬁ—%ﬁ—%\/so—m/hzﬁ—m/i\/?

Theorem 3.24: [28] If a CAT T has no edge of order 7 > 6 , then there are exactly 1 such T’ upto symmetry with
(2,3,5) of the

(2,2,2),(2,2,3),(2,2,4),(2,2,5). (2,3,3),(2,3,4).

at least one vertex is of order and no vertex is of order forms

T,,-30=[2,3,5,2,3,5]
Figure 14

Result 3.25: Determinants and spectrums of gram matrices of the 1 CAT obtained in theorem 3.24 is calculated and
listed in table 9. This table also shows the spaces in which these 1 CAT exists.

Table 9
CAT Determinant Spectrum Space
(Ref. Def. 3.1)
_ Hyperbolic
T,-30=[2,3,5,2,3,5] i—écosz[Z +cost| 2 3 teos[ £ ,l—cos z, P
16 2 5 5 2 5)2 5

Remark 3.26: Out of 35 CATs, there are exactly 3 Euclidean CATs, each of them has no edge of order 1 = 6,

n e  upto symmetry. [Refer tables 3, 5 and 7]

Remark 3.27: Out of 35 CATs, there are exactly 23 spherical CATs, 1 CAT has two edges of order 77> 6,4 CATs

have one edge of order 7> 6 and rest 18 CATs have no edge of order n>6, n €
1 to 6]

upto symmetry. [Refer tables
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Remark 3.28: Out of 35 CATs, there are exactly 9 hyperbolic CATSs, each of them has no edge of order 7> 6,

n e  upto symmetry. [Refer tables 3 to 9]

Remark 3.29: Out of 35 CATs, there are exactly 9 hyperbolic CATs, and out of these 9, the last 3 hyperbolic CATs:
T, -28=[2,3,4,2,3,4].T,,-29=[2,3,4,2,3,5].T,,-30=[2,3,5,2,3,5]

are nothing but the 3 CHC (Compact Hyperbolic Coxeter) tetrahedrons found in article [29] upto symmetry. [Refer
tables 8 and 9]
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